Quantum chemistry composite methods (also referred to as thermochemical recipes)[1] are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.
Contents |
The G2 uses seven calculations:
The various energy changes are assumed to be additive so the combined energy is given by:
The second term corrects for the effect of adding the polarization functions. The third term corrects for the diffuse functions. The final term corrects for the larger basis set with the terms from steps 2, 3 and 4 preventing contributions from being counted twice. Two final corrections are made to this energy. The ZPVE is scaled by 0.8929. An empirical correction is then added to account for factors not considered above. This is called the higher level correction (HC) and is given by -0.00481 x (number of valence electrons -0.00019 x (number of unpaired valence electrons). The two numbers are obtained calibrating the results against the experimental results for a set of molecules. The scaled ZPVE and the HLC are added to give the final energy. For some molecules containing one of the third row elements Ga - Xe, a further term is added to account for spin orbit coupling.
Several variants of this procedure have been used. Removing steps 3 and 4 and relying only on the MP2 result from step 5 is significantly cheaper and only slightly less accurate. This is the G2MP2 method. Sometimes the geometry is obtained using a density functional theory method such as B3LYP and sometimes the QCISD(T) method in step 1 is replaced by the coupled cluster method CCSD(T).
The G3 is very similar to G2 but learns from the experience with G2 theory. The 6-311G basis set is replaced by the smaller 6-31G basis. The final MP2 calculations use a larger basis set, generally just called G3large, and correlating all the electrons not just the valence electrons as in G2 theory, additionally a spin-orbit correction term and an empirical correction for valence electrons are introduced. This gives some core correlation contributions to the final energy. The HLC takes the same form but with different empirical parameters. A Gaussian-4 method has been introduced.[2] An alternative to the Gaussian-n methods is the correlation consistent composite method.[3][4]
This approach, developed at the University of North Texas by Angela K. Wilson's research group, utilizes the correlation consistent basis sets developed by Dunning and Co-workers. Unlike the Gaussian-n methods, ccCA does not contain any empirically fitted term. The B3LYP density functional method with the cc-pVTZ basis set, and cc-pV(T+d)Z for third row elements (Na - Ar), are used to determine the equilibrium geometry. Single point calculations are then used to find the reference energy and additional contributions to the energy. The total ccCA energy for main group is calculated by:
The reference energy EMP2/CBS is the MP2/aug-cc-pVnZ (where n=D,T,Q) energies extrapolated at the complete basis set limit by the Peterson mixed gaussian exponential extrapolation scheme. CCSD(T)/cc-pVTZ is used to account for correlation beyond the MP2 theory:
Core-core and core-valence interactions are accounted for using MP2(FC1)/aug-cc-pCVTZ:
Scalar relativistic effects are also taken into account with a one-particle Douglass Kroll Hess Hamiltonian and recontracted basis sets:
The last two terms are Zero Point Energy corrections scaled with a factor of 0.989 to account for deficiencies in the harmonic approximation and spin-orbit corrections considered only for atoms.
These methods by Petersson and coworkers[5] have some similarity to G2 and G3 but contain an MP2 extrapolation to the complete basis set limit as one step.
The T1 method.[1] is an efficient computational approach developed for calculating accurate heats of formation of uncharged, closed-shell molecules comprising H, C, N, O, F, Si, P, S, Cl and Br, within experimental error. It is practical for molecules up to molecular weight ~ 500 a.m.u.
T1 method as incorporated in Spartan consists of:
T1 follows the G3(MP2) recipe, however, by substituting an HF/6-31G* for the MP2/6-31G* geometry, eliminating both the HF/6-31G* frequency and QCISD(T)/6-31G* energy and approximating the MP2/G3MP2large energy using dual basis set RI-MP2 techniques, the T1 method reduces computation time by up to 3 orders of magnitude. Atom counts, Mulliken bond orders and HF/6-31G* and RI-MP2 energies are introduced as variables in a linear regression fit to a set of 1126 G3(MP2) heats of formation. The T1 procedure reproduces these values with mean absolute and RMS errors of 1.8 and 2.5 kJ/mol, respectively. T1 reproduces experimental heats of formation for a set of 1805 diverse organic molecules from the NIST thermochemical database[6] with mean absolute and RMS errors of 8.5 and 11.5 kJ/mol, respectively.
Gaussian 4 (G4) theory [8] is an approach for the calculation of energies of molecular species containing first-row (Li–F), second-row (Na–Cl), and third row main group elements. G4 theory is an improved modification of the earlier approach G3 theory. The modifications to G3- theory are the change in an estimate of the Hartree-Fock energy limit, an expanded polarization set for the large basis set calculation, use of CCSD(T) energies, use of geometries from density functional theory and zero-point energies, and two added higher level correction parameters. According to the developers, this theory gives significant improvement over G3-theory.